American Psychiatric Association. editor. Diagnostic and statistical manual of mental disorders : DSM-5. 5th ed. American Psychiatric Association; 2013.
Chevallier C, Parish-Morris J, McVey A, Rump KM, Sasson NJ, Herrington JD, Schultz RT. Measuring social attention and motivation in autism spectrum disorder using eye-tracking: stimulus type matters. Autism Res. 2015;8(5):620–8. https://doi.org/10.1002/aur.1479.
Article
PubMed
PubMed Central
Google Scholar
Guillon Q, Hadjikhani N, Baduel S, Rogé B. Visual social attention in autism spectrum disorder: insights from eye tracking studies. Neurosci Biobehav Rev. 2014;42:279–97. https://doi.org/10.1016/j.neubiorev.2014.03.013.
Article
PubMed
Google Scholar
Jones EJH, Venema K, Earl R, Lowy R, Barnes K, Estes A, Dawson G, Webb SJ. Reduced engagement with social stimuli in 6-month-old infants with later autism spectrum disorder: a longitudinal prospective study of infants at high familial risk. J Neurodev Disord. 2016;8:7. https://doi.org/10.1186/s11689-016-9139-8.
Article
PubMed
PubMed Central
Google Scholar
Klin A, Jones W, Schultz R, Volkmar F, Cohen D. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. arch Gen Psychiatry. 2002;59(9):809–16. https://doi.org/10.1001/archpsyc.59.9.809.
Article
PubMed
Google Scholar
Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W. Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature. 2009;459(7244):257. https://doi.org/10.1038/nature07868.
Article
PubMed
PubMed Central
Google Scholar
Parish-Morris J, Chevallier C, Tonge N, Letzen J, Pandey J, Schultz RT. Visual attention to dynamic faces and objects is linked to face processing skills: a combined study of children with autism and controls. Front Psychol. 2013. https://doi.org/10.3389/fpsyg.2013.00185.
Article
PubMed
PubMed Central
Google Scholar
Pierce K, Conant D, Hazin R, Stoner R, Desmond J. Preference for geometric patterns early in life as a risk factor for autism. Arch Gen Psychiatry. 2011;68(1):101–9. https://doi.org/10.1001/archgenpsychiatry.2010.113.
Article
PubMed
Google Scholar
Reisinger DL, Shaffer RC, Horn PS, Hong MP, Pedapati EV, Dominick KC, Erickson CA. Atypical social attention and emotional face processing in autism spectrum disorder: insights from face scanning and pupillometry. Front Integr Neurosci. 2020. https://doi.org/10.3389/fnint.2019.00076.
Article
PubMed
PubMed Central
Google Scholar
Speer LL, Cook AE, McMahon WM, Clark E. Face processing in children with autism: effects of stimulus contents and type. Autism. 2007;11(3):265–77. https://doi.org/10.1177/1362361307076925.
Article
PubMed
Google Scholar
Chawarska K, Macari S, Shic F. Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biol Psychiat. 2013;74(3):195–203. https://doi.org/10.1016/j.biopsych.2012.11.022.
Article
PubMed
Google Scholar
Jones W, Klin A. Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature. 2013;504(7480):427. https://doi.org/10.1038/nature12715.
Article
PubMed
PubMed Central
Google Scholar
Sacrey L-A, Bryson SE, Zwaigenbaum L. Prospective examination of visual attention during play in infants at high-risk for autism spectrum disorder: a longitudinal study from 6 to 36 months of age. Behav Brain Res. 2013;256:441–50. https://doi.org/10.1016/j.bbr.2013.08.028.
Article
PubMed
Google Scholar
Franchini M, Wood de Wilde H, Glaser B, Gentaz E, Eliez S, Schaer M. Brief report: a preference for biological motion predicts a reduction in symptom severity 1 year later in preschoolers with autism spectrum disorders. Front Psych. 2016. https://doi.org/10.3389/fpsyt.2016.00143.
Article
Google Scholar
Pierce K, Marinero S, Hazin R, McKenna B, Barnes CC, Malige A. Eye tracking reveals abnormal visual preference for geometric images as an early biomarker of an autism spectrum disorder subtype associated with increased symptom severity. Biol Psychiat. 2016;79(8):657–66. https://doi.org/10.1016/j.biopsych.2015.03.032.
Article
PubMed
Google Scholar
Shic F, Bradshaw J, Klin A, Scassellati B, Chawarska K. Limited activity monitoring in toddlers with autism spectrum disorder. Brain Res. 2011;1380:246–54. https://doi.org/10.1016/j.brainres.2010.11.074.
Article
PubMed
Google Scholar
Dawson G, Munson J, Estes A, Osterling J, McPartland J, Toth K, Carver L, Abbott R. Neurocognitive function and joint attention ability in young children with autism spectrum disorder versus developmental delay. Child Dev. 2002;73(2):345–58. https://doi.org/10.1111/1467-8624.00411.
Article
PubMed
Google Scholar
Mundy P. Joint attention and social-emotional approach behavior in children with autism. Dev Psychopathol. 1995;7(1):63–82. https://doi.org/10.1017/S0954579400006349.
Article
Google Scholar
Dawson G, Toth K, Abbott R, Osterling J, Munson J, Estes A, Liaw J. Early social attention impairments in autism: social orienting, joint attention, and attention to distress. Dev Psychol. 2004;40(2):271–83. https://doi.org/10.1037/0012-1649.40.2.271.
Article
PubMed
Google Scholar
Murray DS, Creaghead NA, Manning-Courtney P, Shear PK, Bean J, Prendeville J-A. The relationship between joint attention and language in children with autism spectrum disorders. Focus Autism Other Dev Disabil. 2008. https://doi.org/10.1177/1088357607311443.
Article
Google Scholar
Franchini M, Armstrong VL, Schaer M, Smith IM. Initiation of joint attention and related visual attention processes in infants with autism spectrum disorder: literature review. Child Neuropsychol. 2019;25(3):287–317. https://doi.org/10.1080/09297049.2018.1490706.
Article
PubMed
Google Scholar
Falck-Ytter T, Fernell E, Hedvall ÅL, von Hofsten C, Gillberg C. Gaze performance in children with autism spectrum disorder when observing communicative actions. J Autism Dev Disord. 2012;42(10):2236–45. https://doi.org/10.1007/s10803-012-1471-6.
Article
PubMed
Google Scholar
Higuchi T, Ishizaki Y, Noritake A, Yanagimoto Y, Kobayashi H, Nakamura K, Kaneko K. Spatiotemporal characteristics of gaze of children with autism spectrum disorders while looking at classroom scenes. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0175912.
Article
PubMed
PubMed Central
Google Scholar
Thorup E, Nyström P, Gredebäck G, Bölte S, Falck-Ytter T, EASE Team. Reduced alternating gaze during social interaction in infancy is associated with elevated symptoms of autism in toddlerhood. J Abnorm Child Psychol. 2018;46(7):1547–64. https://doi.org/10.1007/s10802-017-0388-0.
Article
PubMed
PubMed Central
Google Scholar
Campbell DJ, Shic F, Macari S, Chawarska K. Gaze response to dyadic bids at 2 years related to outcomes at 3 years in autism spectrum disorders: a subtyping analysis. J Autism Dev Disord. 2014;44(2):431–42. https://doi.org/10.1007/s10803-013-1885-9.
Article
PubMed
PubMed Central
Google Scholar
Chawarska K, Macari S, Shic F. Context modulates attention to social scenes in toddlers with autism. J Child Psychol Psychiatry. 2012;53(8):903–13. https://doi.org/10.1111/j.1469-7610.2012.02538.x.
Article
PubMed
Google Scholar
Harrop C, Jones D, Zheng S, Nowell S, Schultz R, Parish-Morris J. Visual attention to faces in children with autism spectrum disorder: are there sex differences? Molecular Autism. 2019;10:28. https://doi.org/10.1186/s13229-019-0276-2.
Article
PubMed
PubMed Central
Google Scholar
Macari S, Milgramm A, Reed J, Shic F, Powell KK, Macris D, Chawarska K. Context-specific dyadic attention vulnerabilities during the first year in infants later developing autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2020. https://doi.org/10.1016/j.jaac.2019.12.012.
Article
PubMed
Google Scholar
Parish-Morris J, Pallathra AA, Ferguson E, Maddox BB, Pomykacz A, Perez LS, Bateman L, Pandey J, Schultz RT, Brodkin ES. Adaptation to different communicative contexts: an eye tracking study of autistic adults. J Neurodev Disord. 2019;11(1):5. https://doi.org/10.1186/s11689-019-9265-1.
Article
PubMed
PubMed Central
Google Scholar
Livingston LA, Shah P, Milner V, Happé F. Quantifying compensatory strategies in adults with and without diagnosed autism. Molecular Autism. 2020;11(1):15. https://doi.org/10.1186/s13229-019-0308-y.
Article
PubMed
PubMed Central
Google Scholar
Livingston LA, Happé F. Conceptualising compensation in neurodevelopmental disorders: reflections from autism spectrum disorder. Neurosci Biobehav Rev. 2017;80:729–42. https://doi.org/10.1016/j.neubiorev.2017.06.005.
Article
PubMed
PubMed Central
Google Scholar
Wass S, Jones E, Gliga T et al. Shorter spontaneous fixation durations in infants with later emerging autism. Sci Rep. 2015;5:8284. https://doi.org/10.1038/srep08284
Avni I, Meiri G, Bar-Sinai A, Reboh D, Manelis L, Flusser H, Michaelovski A, Menashe I, Dinstein I. Children with autism observe social interactions in an idiosyncratic manner. Autism Res. 2019. https://doi.org/10.1002/aur.2234.
Article
PubMed
Google Scholar
Murias M, Major S, Davlantis K, Franz L, Harris A, Rardin B, Sabatos-DeVito M, Dawson G. Validation of eye-tracking measures of social attention as a potential biomarker for autism clinical trials. Autism Res. 2018;11(1):166–74. https://doi.org/10.1002/aur.1894.
Article
PubMed
Google Scholar
Shaffer RC, Pedapati EV, Shic F, Gaietto K, Bowers K, Wink LK, Erickson CA. Brief report: diminished gaze preference for dynamic social interaction scenes in youth with autism spectrum disorders. J Autism Dev Disord. 2017;47(2):506–13. https://doi.org/10.1007/s10803-016-2975-2.
Article
PubMed
Google Scholar
Keehn B, Müller R-A, Townsend J. Atypical attentional networks and the emergence of autism. Neurosci Biobehav Rev. 2013;37(2):164–83. https://doi.org/10.1016/j.neubiorev.2012.11.014.
Article
PubMed
Google Scholar
Sacrey L-AR, Armstrong VL, Bryson SE, Zwaigenbaum L. Impairments to visual disengagement in autism spectrum disorder: a review of experimental studies from infancy to adulthood. Neurosci Biobehav Rev. 2014;47:559–77. https://doi.org/10.1016/j.neubiorev.2014.10.011.
Article
PubMed
Google Scholar
Kojovic N, Ben Hadid L, Franchini M, Schaer M. Sensory processing issues and their association with social difficulties in children with autism spectrum disorders. J Clin Med. 2019. https://doi.org/10.3390/jcm8101508.
Article
PubMed
PubMed Central
Google Scholar
Robain F, Franchini M, Kojovic N, Wood de Wilde H, Schaer M. Predictors of treatment outcome in preschoolers with autism spectrum disorder: an observational study in the Greater Geneva Area Switzerland. J Autism Dev Disord. 2020. https://doi.org/10.1007/s10803-020-04430-6.
Article
PubMed
Google Scholar
Sperdin HF, Coito A, Kojovic N, Rihs TA, Jan RK, Franchini M, Plomp G, Vulliemoz S, Eliez S, Michel CM, Schaer M. Early alterations of social brain networks in young children with autism. Elife. 2018;7:e31670. https://doi.org/10.7554/eLife.31670.
Article
PubMed
PubMed Central
Google Scholar
Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore PC, Pickles A, Rutter M. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord. 2000;30(3):205–23.
Article
PubMed
Google Scholar
Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop SL. Autism diagnostic observation schedule, 2nd edition (ADOS-2). Western Psychological Services; 2012.
Gotham K, Pickles A, Lord C. Standardizing ADOS scores for a measure of severity in autism spectrum disorders. J Autism Dev Disord. 2009;39(5):693–705. https://doi.org/10.1007/s10803-008-0674-3.
Article
PubMed
Google Scholar
Hus V, Gotham K, Lord C. Standardizing ADOS domain scores : Separating severity of social affect and restricted and repetitive behaviors. J Autism Dev Disord. 2014;44(10):2400–12. https://doi.org/10.1007/s10803-012-1719-1.
Article
PubMed
PubMed Central
Google Scholar
Sparrow SS, Balla DA, Cicchetti DV. Vineland II: Vineland adaptive behavior scales. American Guidance Service; 2005.
Schopler E, Lansing MD, Reichler RJ, Marcus LM. Psychoeducational Profile: TEACCH individualized assessment for children with autism spectrum disorders. 3rd ed. Berlin: Pro-Ed, Inc.; 2005.
Google Scholar
Mullen EM. Mullen Scales of Early Learning. AGS ed.; 1995.
Weschler D. Weschler preschool and primary scale of intelligence—fourth edition. Pearson; 2012.
Howlin P, Savage S, Moss P, Tempier A, Rutter M. Cognitive and language skills in adults with autism: a 40-year follow-up. J Child Psychol Psychiatry. 2014;55(1):49–58. https://doi.org/10.1111/jcpp.12115.
Article
PubMed
Google Scholar
Land MF, Tatler BW. Looking and acting: vision and eye movements in natural behaviour (p. xi, 269). Oxford University Press; 2009. https://doi.org/10.1093/acprof:oso/9780198570943.001.0001.
Olsen A. The Tobii IVT Fixation Filter Algorithm description. https://www.semanticscholar.org/paper/The-Tobii-IVT-Fixation-Filter-Algorithm-description-Olsen/66cdac4b380eabb9de3b25c7922c8de92d8d6cae#paper-header (2012).
Frazier TW, Strauss M, Klingemier EW, Zetzer EE, Hardan AY, Eng C, Youngstrom EA. A meta-analysis of gaze differences to social and nonsocial information between individuals with and without autism. J Am Acad Child Adolesc Psychiatry. 2017;56(7):546–55. https://doi.org/10.1016/j.jaac.2017.05.005.
Article
PubMed
PubMed Central
Google Scholar
Mottron L, Dawson M, Soulières I, Hubert B, Burack J. Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. J Autism Dev Disord. 2006;36(1):27–43. https://doi.org/10.1007/s10803-005-0040-7.
Article
PubMed
Google Scholar
Schopler E, Mesibov GB, Hearsey K. Structured teaching in the TEACCH system. In: Schopler E, Mesibov GB, editors. Learning and cognition in autism. Boston: Springer; 1995. p. 243–68. https://doi.org/10.1007/978-1-4899-1286-2_13.
Chapter
Google Scholar
Iordanescu L, Grabowecky M, Franconeri S, Theeuwes J, Suzuki S. Characteristic sounds make you look at target objects more quickly. Atten Percept Psychophys. 2010;72(7):1736–41. https://doi.org/10.3758/APP.72.7.1736.
Article
PubMed
PubMed Central
Google Scholar
Ocak E, Eshraghi RS, Danesh A, Mittal R, Eshraghi AA. Central auditory processing disorders in individuals with autism spectrum disorders. Balkan Med J. 2018;35(5):367–72. https://doi.org/10.4274/balkanmedj.2018.0853.
Article
PubMed
PubMed Central
Google Scholar
Ouimet T, Foster NEV, Tryfon A, Hyde KL. Auditory-musical processing in autism spectrum disorders: a review of behavioral and brain imaging studies. Ann N Y Acad Sci. 2012;1252:325–31. https://doi.org/10.1111/j.1749-6632.2012.06453.x.
Article
PubMed
Google Scholar
McCall RB, McGhee PE. The discrepancy hypothesis of attention and affect in infants. In: Užgiris IČ, Weizmann F, editors. The structuring of experience. Springer; 1977. p. 179–210. https://doi.org/10.1007/978-1-4615-8786-6_7.
Tomasello M, Carpenter M. Shared intentionality. Dev Sci. 2007;10(1):121–5. https://doi.org/10.1111/j.1467-7687.2007.00573.x.
Article
PubMed
Google Scholar
Tomasello M, Carpenter M, Call J, Behne T, Moll H. Understanding and sharing intentions: The origins of cultural cognition. Behav Brain Sci. 2005;28(5):675–91; discussion 691–735. https://doi.org/10.1017/S0140525X05000129.
Article
PubMed
Google Scholar
Benson V, Castelhano MS, Howard PL, Latif N, Rayner K. Looking, seeing and believing in autism: eye movements reveal how subtle cognitive processing differences impact in the social domain. Autism Res. 2016;9(8):879–87. https://doi.org/10.1002/aur.1580.
Article
PubMed
Google Scholar
Franchini M, Glaser B, Wood de Wilde H, Gentaz E, Eliez S, Schaer M. Social orienting and joint attention in preschoolers with autism spectrum disorders. PLoS ONE. 2017;12(6):e0178859. https://doi.org/10.1371/journal.pone.0178859.
Article
PubMed
PubMed Central
Google Scholar
Rogers SJ, Dawson G. Early Start Denver Model for young children with autism: promoting language, learning, and engagement. Guilford Press; 2010.
Mundy P. A review of joint attention and social-cognitive brain systems in typical development and autism spectrum disorder. Eur J Neurosci. 2018;47(6):497–514. https://doi.org/10.1111/ejn.13720.
Article
PubMed
Google Scholar
Bruchhage MMK, Bucci MP, Becker EBE. Cerebellar involvement in autism and ADHD. In: Manto M, Huisman TAGM, editors. Handbook of clinical neurology, vol. 155. Elsevier; 2018. p. 61–72. https://doi.org/10.1016/B978-0-444-64189-2.00004-4.
Freedman EG, Foxe JJ. Eye movements, sensorimotor adaptation and cerebellar-dependent learning in autism: toward potential biomarkers and subphenotypes. Eur J Neurosci. 2018;47(6):549–55. https://doi.org/10.1111/ejn.13625.
Article
PubMed
Google Scholar
Kasari C, Gulsrud A, Freeman S, Paparella T, Hellemann G. Longitudinal follow up of children with autism receiving targeted interventions on joint attention and play RH = targeted interventions on joint attention and play. J Am Acad Child Adolesc Psychiatry. 2012;51(5):487–95. https://doi.org/10.1016/j.jaac.2012.02.019.
Article
PubMed
PubMed Central
Google Scholar
Murza KA, Schwartz JB, Hahs-Vaughn DL, Nye C. Joint attention interventions for children with autism spectrum disorder: a systematic review and meta-analysis. Int J Lang Commun Disord. 2016;51(3):236–51. https://doi.org/10.1111/1460-6984.12212.
Article
PubMed
Google Scholar
Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91. https://doi.org/10.3758/BF03193146.
Article
PubMed
Google Scholar
Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Earlbaum Associates; 1988.