Skip to main content

The big five factors as differential predictors of self-regulation, achievement emotions, coping and health behavior in undergraduate students



The aim of this research was to analyze whether the personality factors included in the Big Five model differentially predict the self-regulation and affective states of university students and health.


A total of 637 students completed validated self-report questionnaires. Using an ex post facto design, we conducted linear regression and structural prediction analyses.


The findings showed that model factors were differential predictors of both self-regulation and affective states. Self-regulation and affective states, in turn, jointly predict emotional performance while learning and even student health. These results allow us to understand, through a holistic predictive model, the differential predictive relationships of all the factors: conscientiousness and extraversion were predictors regulating positive emotionality and health; the openness to experience factor was non-regulating; nonregulating; and agreeableness and neuroticism were dysregulating, hence precursors of negative emotionality and poorer student health.


These results are important because they allow us to infer implications for guidance and psychological health at university.

Peer Review reports


The personality characteristics of students have proven to be essential explanatory and predictive factors of learning behavior and performance at universities [1,2,3,4]. However, our knowledge about such factors does not exhaust further questions, such as which personality factors tend toward the regulation of learning behavior and which do not? Or can personality factors be arranged on a continuum to understand student differences in their emotions when learning? Consequently, the aim of this study was to analyze whether students’ personality traits differentially predict the regulation of behavior and emotionality. These variables align as different motivational-affective profiles of students, through the type of achievement emotions they experience during study, as well as their coping strategies, motivational state, and ultimately health.

Five-factor model

Previous research has shown the value and consistency of the five-factor model for analyzing students’ personality traits. Pervin, Cervone, and John [5] defined five factors as follows: (1) Conscientiousness includes a sense of duty, persistence, and behavior that is self-disciplined and goal-directed. The descriptors organized, responsible, and efficient are typically used to describe conscientious persons. (2) Extraversion is characterized by the quantity and intensity of interpersonal relationships, as well as sensation seeking. The descriptors sociable, assertive, and energetic are typically used to describe extraverted persons. (3) Openness to experience incorporates autonomous thinking and willingness to examine unfamiliar ideas and try new things. The descriptors inquisitive, philosophical, and innovative are typically used to describe persons open to experience. (4) Agreeableness is quantified along a continuum from social antagonism to compassion in one’s quality of interpersonal interactions. The descriptors inquisitive, kind, considerate, and generous are often used to describe persons characterized by agreeableness. (5) Finally, neuroticism tends to indicate negative emotions. Persons showing neuroticism are often described as moody, nervous, or touchy.

This construct has appeared to consistently predict individual differences between university students. Prior research has documented its essential role in explaining differences in achievement [6, 7], motivational states [8], students’ learning approaches [9], self-regulated learning [10].

Five-factor model, self-regulation, achievement emotions and health

The relationship between the Big Five factors and self-regulation has been analyzed historically with much interest [11,12,13,14,15]. The dimensions of the five-factor model describe fundamental ways in which people differ from one another [16, 17]. Of the five factors, conscientiousness may be the best reflection of self-regulation capacity. More recent research has shown consistent evidence of the relationship between these two constructs, especially conscientiousness, which has a positive relationship, and neuroticism, which has a negative relationship with self-regulation [18, 19]. The Big Five factors are also related to coping strategies [20].

The evidence on the role of the five-factor model in self-regulation, achievement emotions, and health has been fairly consistent. On the one hand, self-regulation has a confirmed role as a meta-cognitive variable that is present in students’ mental health problems [21]. Similarly, personality factors and types of perfectionism have been associated with mental health in university students [22]. In a complementary fashion, one longitudinal study has shown that personality factors have a persistent effect on self-regulation and health. Sirois and Hirsch [23] confirmed that the Big Five traits affect balance and health behaviors.

Self-regulation, achievement emotions and health

Self-regulation has recently been considered a significant behavioral meta-ability that regulates other skills in the university environment. It has consistently appeared to be a predictor of achievement emotions [24], coping strategies [25], and health behavior [26]. In the context of university learning, the level of self-regulation is a determining factor in learning approaches, motivation and achievement [27]. Similarly, the self- vs. externally regulated behavior theory [27, 28] assumes that the continuum of self-regulation can be divided into three types: (1) self-regulation behavior, which is the meta-behavior or meta-skill of planning and executing control over one’s behavior; (2) nonregulation behavior (deregulation), where consistent self-regulating behavior is absent; and (3) nonregulation behavior, when regulatory behavior is maladaptive or contrary to what is expected. Some example behaviors are presented below, and these have already been documented (see Table 1). Recently, Beaulieu and collaborators [29] proposed a self-dysregulation latent profile for describing subjects with lower scores on subscales regarding extraversion, agreeableness and conscientiousness and higher scores concerning negative emotional facets.

Table 1 Conceptual Continuum and Typologies of Each Self-Regulatory Behavior

Table 1 here.

Consequently, the question that we pose - as yet unresolved - is whether the different personality factors predict a determined type of regulation on the continuum of regulatory behavior, nonregulatory (deregulatory) behavior and dysregulatory behavior, based on evidence.

Aims and hypotheses

Based on the existing evidence, the aim of this study was to establish a structural predictive model that would order personality factors along a continuum as predictors of university students’ regulatory behavior. The following hypotheses were proposed for this purpose: (1) personality factors differentially predict students’ regulatory, nonregulatory and dysregulatory behavior during academic learning; they also differentially determine students’ type of emotional states (positive vs. negative affect); (2) the preceding factors differentially predict achievement emotions (positive vs. negative) during learning, coping strategies (problem-focused vs. emotion-focused) and motivational state (engagement vs. burnout); and (3) all these factors ultimately predict student health, either positively or negatively, depending on their regulatory or dysregulatory nature.



Data were gathered from 2019 to 2022, encompassing a total of 626 undergraduate students enrolled in Psychology, Primary Education, and Educational Psychology programs across two Spanish universities. Within this cohort, 85.5% were female, and 14.5% were male, with ages ranging from 19 to 24 years and a mean age of 21.33 years. The student distribution was equal between the two universities, with 324 attending one and 318 attending the other. The study employed an incidental, nonrandomized design. The guidance departments at both universities extended invitations for teacher participation, and teachers, in turn, invited their students to partake voluntarily, ensuring anonymity. Questionnaires were completed online for each academic subject, corresponding to the specific teaching-learning process.


Five personality factors

The Big Five Questionnaire [30], based on the version by Barbaranelli et al. [31], assessed scores for five personality factors. Confirmatory factor analysis (CFA) of the 67 scale items resulted in a five-factor structure aligned with the Big Five Model. The outcomes demonstrated satisfactory psychometric properties and acceptable fit indices. The second-order confirmatory model exhibited a good fit (chi-square = 38.273; degrees of freedom (20–15) = 5; p > 0.10; chi/df = 7.64; RMR = 0.0425; NFI = 0.939; RFI = 0.917; IFI = 0.947; TLI = 0.937; CFI = 0.946; RMSEA = 0.065; HoeLength index = 2453 (p < 0.05) and 617 (p < 0.01)). Internal consistency of the total scale was also strong (alpha = 0.956; Part 1 = 0.932 and Part 2 = 0.832; Spearman-Brown = 0.962 and Guttman = 0.932).

Self-Regulation: The Short Self-Regulation Questionnaire (SSRQ) [32] gauged self-regulation. The Spanish adaptation, previously validated in Spanish samples [33], encompassed four factors measured by a total of 17 items. Confirmatory factor analysis confirmed a consistent factor structure (chi-square = 845.593; df = 113; chi/df = 7.483; RMSM = 0.0299; CFI = 0.959, GFI = 0.94, AGFI = 0.96, RMSEA = 0.059). Validity and reliability values (Cronbach’s alpha) were deemed acceptable (total (α = 0.86; Omega = 0.843); goal-setting planning (α = 0.79; Omega = 0.784); perseverance (α = 0.78; Omega = 0.779); decision-making (α = 0.72; Omega = 0.718); and learning from mistakes (α = 0.72; Omega = 0.722)), comparable to those of the English version. Example statements include: “I usually keep track of my progress toward my goals,” “In regard to deciding about a change, I feel overwhelmed by the choice,” and “I learn from my mistakes.”

Positive-negative affect

The Positive and Negative Affect Scale (PANAS-N) [34], validated with university students, assessed positive and negative affect. The PANAS comprises two factors and 20 items, demonstrating a consistent confirmatory factor structure (chi-square = 1111.147; df = 169; chi/df = 6.518; RMSM = 0.0346; CFI = 0.955, GFI = 0.963, AGFI = 0.96, RMSEA = 0.058). Validity and reliability values (Cronbach’s alpha) were acceptable (total (α = 0.891; Omega = 0.857); positive affect (α = 0.8199; Omega = 0.784); and negative affect (α = 0.795; Omega = 0.776), comparable to those of the English version. Sample items include “I am a lively person, I usually get excited; I have bad moods (I get upset or irritated).”

Learning Achievement Emotion: The variable was measured using the Spanish version [35] of the Achievement Emotions Questionnaire (AEQ-Learning) [36], encompassing nine emotions (enjoyment, hope, pride, relief, anger, anxiety, hopelessness, shame, and boredom). Emotions were classified based on valence (positive or negative) and activation (activating or deactivating), resulting in four quadrants. Another classification considered the source or trigger: the ongoing activity, prospective outcome, or retrospective outcome. Psychometric properties were adequate, and the confirmatory model displayed a good fit (chi-square = 529.890; degrees of freedom = 79; chi/df = 6.70; SRMR = 0.053; p > 0.08; NFI = 0.964; RFI = 0.957; IFI = 0.973; TLI = 0.978, CFI = 0.971; RMSEA = 0.080; HOELTER = 165 (p < 0.05) and 178 (p < 0.01)). Good internal consistency was found for the total scale (Alpha = 0.939; Part 1 = 0.880, Part 2 = 0.864; Spearman-Brown = 0.913 and 884; Guttman = 0.903). Example items include Item 90: “I am angry when I have to study”; Item 113: “My sense of confidence motivates me”; and Item 144: “I am proud of myself”.

Engagement-Burnout: Engagement was assessed using a validated Spanish version of the Utrecht Work Engagement Scale for Students [37], demonstrating satisfactory psychometric properties for Spanish students. The model displayed good fit indices, with a second-order structure comprising three factors: vigor, dedication, and absorption. Scale unidimensionality and metric invariance were verified in the samples assessed (chi-square = 592.526, p > 0.09; df = 84, chi/df = 7.05; SRMR = 0.034; TLI = 0.976, IFI = 0.954, and CFI = 0.923; RMSEA = 0.083; HOELTER = 153, p < 0.05; 170 p < 0.01). Cronbach’s alpha for this sample was 0.900 (14 items); the two parts of the scale produced values of 0.856 (7 items) and 0.786 (7 items).

Burnout: The Maslach Burnout Inventory (MBI) [38], in its validated Spanish version, was employed to assess burnout. This version exhibited adequate psychometric properties for Spanish students. Good fit indices were obtained, with a second-order structure comprising three factors: exhaustion or depletion, cynicism, and lack of effectiveness. Scale unidimensionality and metric invariance were confirmed in the samples assessed (chi-square = 567.885, p > 0.010, df = 87, chi/df = 6.52; SRMR = 0.054; CFI = 0.956, IFI = 0.951, TLI = 0.951; RMSEA = 0.071; HOELTER = 224, p < 0.05; 246 p < 0.01). Cronbach’s alpha for this sample was 0.874 (15 items); the two parts of the scale were 0.853 (8 items) and 0.793 (7 items).

Strategies for coping with academic stress: The Coping Strategies Scale (Escala Estrategias de Coping - EEC) [39] was utilized in its original version. Constructed based on the Lazarus and Folkman questionnaire [40] using theoretical-rational criteria, the original 90-item instrument resulted in a 64-item first-order structure. The second-order structure comprised 10 factors and two significant dimensions. A satisfactory fit was observed in the second-order structure (chi-square = 478.750; degrees of freedom = 73, p > 0.09; chi/df = 6.55; RMSR = 0.052; NFI = 0.901; RFI = 0.945; IFI = 0.903, TLI = 0.951, CFI = 0.903). Reliability was confirmed with Cronbach’s alpha values of 0.93 (complete scale), 0.93 (first half), and 0.90 (second half); Spearman-Brown coefficient of 0.84; and Guttman coefficient of 0.80. Two dimensions and 11 factors were identified: (1) Dimension: emotion-focused coping—F1. Fantasy distraction; F6. Help for action; F8. Preparing for the worst; F9. Venting and emotional isolation; F11. Resigned acceptance. (2) Dimension: problem-focused coping—F2. Help seeking and family counsel; F10. Self-instructions; F10. Positive reappraisal and firmness; F12. Communicating feelings and social support; F13. Seeking alternative reinforcement.

Student Health Behavior: The Physical and Psychosocial Health Inventory [41] measured this variable, summarizing the World Health Organization (WHO) definition of health: “Health is a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.” The inventory focused on the impact of studies, with questions such as “I feel anxious about my studies.” Students responded on a Likert scale from 1 (strongly disagree) to 5 (strongly agree). In the Spanish sample, the model displayed good fit indices (CFI = 0.95, GFI = 0.96, NFI = 0.94; RMSEA = 0.064), with a Cronbach’s alpha of 0.82.


All participants provided informed consent before engaging in the study. The completion of scales was voluntary and conducted through an online platform. Over two academic years, students reported on five distinct teaching-learning processes, each corresponding to a different university subject they were enrolled in during this period. Students took their time to answer the questionnaires gradually throughout the academic year. The assessment for Presage variables took place in September-October of 2018 and 2019, Process variables were assessed in the subsequent February-March, and Product variables were evaluated in May-June. The procedural steps were ethically approved by the Ethics Committee under reference 2018.170, within the broader context of an R&D Project spanning 2018 to 2021.

Data analysis

The ex post facto design [42] of this cross-sectional study involved bivariate association analyses, multiple regression, and structural predictions (SEMs). Preliminary analyses were executed to ensure the appropriateness of the parameters used in the analyses, including tests for normality (Kolmogorov-Smirnov), skewness, and kurtosis (+-0.05).

Multiple regression

Hypothesis 1 was evaluated using multiple regression analysis through SPSS (v. 26).

Confirmatory factor analysis

To test Hypotheses 2 and 3, a structural equation model (SEM) was employed in this sample. Model fit was assessed by examining the chi-square to degrees of freedom ratio, along with RMSEA (root mean square error of approximation), NFI (normed fit index), CFI (comparative fit index), GFI (goodness-of-fit index), and AGFI (adjusted goodness-of-fit index) [43]. Ideally, all these values should surpass 0.90. The adequacy of the sample size was confirmed using the Hoelter index [44]. These analyses were conducted using AMOS (v.22).


Prediction results

The predictive relationships exhibited a continuum along two extremes. On the one hand, conscientiousness, extraversion and openness were significant, graded, and positive predictors of self-regulation. On the other hand, Agreeableness and Neuroticism were negative, graded predictors of self-regulation. A considerable percentage of explained variance was observed (r2 = 0.499). The most meaningful finding, however, is that this predictive differential grading is maintained for the rest of the variables analyzed: positive affect (r2 = 0.571) and negative affect (r2 = 0.524), achievement emotions during study, engagement burnout, problem- and emotion-focused coping strategies, and student health. See Table 2.

Table 2 Predictions between the Five Factor Model (FFM) and health variables (n = 637)

Structural prediction results

Structural prediction model

Three models were tested. Model 1 proposes the exclusive prediction of personality factors on the rest of the factors, not including self-regulation. Model 2 evaluated the predictive potential of self-regulation on the factors of the Big Five model. Model 3 tested the ability of the Big Five personality traits to predict self-regulation and the other factors. The latter model presented adequate statistical values. These models are shown in Table 3.

Table 3 Models of structural linear results of the variables

Models of the linear structural results of the variables

Direct effects

The statistical effects showed a direct, significant, positive predictive effect of the personality factors C (Conscientiousness) and E (Extraversion) on self-regulation. The result for factor O (openness to experience) was not significant. Factors A (agreeableness) and N (neuroticism) were negatively related, especially the latter. In a complementary fashion, factors C and E showed significant, positive predictions of positive affect, while O and A had less strength. Factor N most strongly predicted negative affect.

Moreover, self-regulation positively predicted positive achievement emotions during study and negatively predicted negative achievement emotions. Positive affect predicted positive emotions during study, engagement, and problem-focused coping strategies; negative affect predicted negative emotions during study, burnout, and emotion-focused strategies. Positive emotions during study negatively predict negative emotions and burnout. Engagement positively predicted problem-focused coping and negatively predicted burnout. Finally, problem-focused coping also predicted emotion-focused coping. Emotion-focused coping negatively predicts health and well-being.

Indirect effects

The Big Five factors exhibited consistent directionality. Factors C and E positively predicted positive emotions, engagement, problem-focused coping, and health and negatively predicted negative emotions and burnout. Factor O had low prediction values in both negative and positive cases. Factors A and N were positive predictors of negative emotions during study, burnout, emotion-focused coping and health, while the opposite was true for factors C and E. These factors had positive predictive effects on self-regulation, positive affect, positive emotions during study, engagement, problem-focused strategies and health; in contrast, the other factors had negative effects on negative affect, negative emotions during study, burnout, emotion-focused strategies and health. See Table 4; Fig. 1.

Table 4 Total, indirect, and direct effects of the variables in this study, and 95% bootstrap confidence intervals (CI)

SEM of prediction in the variables Note. C = Conscientiousness; E = Extraversion; O = Openness to experience; A = Agreeableness; N = Neuroticism; SR = Self-Regulation; Pos.A = Positive Affect; Neg.A = Negative Affect; Pe.S = Positive emotions during study; Ne.S = Negative emotions during study; ENG = Engagement; BURN = Burnout; EFCS = Emotion-focused coping strategies; PFCS = Problem-focused coping strategies: HEALTH: Health behavior.


Based on the Self- vs. External-Regulation theory [27, 28], the aim of this study was to show, differentially, the regulatory, nonregulatory or dysregulatory power of the Big Five personality factors with respect to study behaviors, associated emotionality during study, motivational states, and ultimately, student health behavior.

Regarding Hypothesis 1, the results showed a differential, graded prediction of the Big Five personality factors affecting both self-regulation and affective states. The results from the logistic and structural regression analyses showed a clear, graded pattern from the positive predictive relationship of C to the negative predictive relationship of N. On the one hand, they showed the regulatory effect (direct and indirect) of factors C and E, the nonregulatory effect of O, and the dysregulatory effect of factors A and especially N. This evidence offers a differential categorization of the five factors in an integrated manner. On the other hand, their effects on affective tone (direct and indirect) take the same positive direction in C and E, intermediate in the case of O, and negative in A and N. There is plentiful prior evidence that has shown this relationship, though only in part, not in the integrated manner of the model presented here [29, 45,46,47].

Regarding Hypothesis 2, the evidence shows that self-regulation directly and indirectly predicts affective states in achievement emotions during study. Directionality can be positive or negative according to the influence of C and E and of positive emotionality or of A and N with negative affect. This finding agrees with prior research [29, 48,49,50,51].

Regarding Hypothesis 3, the results have shown clear bidirectionality. Subsequent to the prior influence of personality factors and self-regulation, achievement emotions bring about the resulting motivational states of engagement-burnout and the use of different coping strategies (problem-focused vs. emotion-focused). Positive achievement emotions during study predicted a motivational state of engagement and problem-focused coping strategies and were positive predictors of health; however, negative emotions predicted burnout and emotion-focused coping strategies and were negative predictors of health. These results are in line with prior evidence [49, 52, 53]. Finally, we unequivocally showed a double, sequenced path of emotional variables and affective motivations in a process that ultimately and differentially predicts student health [54, 55].

In conclusion, these results allow us to understand the predictive relationships involving these multiple variables in a holistic predictive model, while previous research has addressed this topic only in part [56]. We believe that these results lend empirical support to the sequence proposed by the SR vs. ER model [27]: the factors of conscientiousness and extraversion appear to be regulators of positive emotionality, engagement and health; openness to experience is considered to be nonregulating; and agreeableness and neuroticism are dysregulators of the learning process and precursors of negative emotionality and poorer student health [57]. New levels of detail—in a graded heuristic—have been added to our understanding of the relationships among the five-factor model, self-regulation, achievement emotions and health [23].

Limitations and research prospects

A primary limitation of this study was that the analysis focused exclusively on the student. The role of the teaching context, therefore, was not considered. Previous research has reported the role of the teaching process, in interaction with student characteristics, in predicting positive or negative emotionality in students [49, 58]. However, such results do not undercut the value of the results presented here. Future research should further analyze potential personality types derived from the present categorization according to heuristic values.

Practical implications

The relationships presented may be considered a mental map that orders the constituent factors of the Five-Factor Model on a continuum, from the most adaptive (or regulatory) and deregulatory to the most maladaptive or dysregulatory. This information is very important for carrying out preventive intervention programs for students and for designing programs for those who could benefit from training in self-regulation and positivity. Such intervention could improve how students experience the difficulties inherent in university studies [47, 59], another indicator of the need for active Psychology and Counseling Centers at universities.

Fig. 1
figure 1

Figure 1

Data availability

No datasets were generated or analysed during the current study.


  1. Abood MH, Alharbi BH, Mhaidat F, Gazo AM. The relationship between personality traits, academic self-efficacy and academic adaptation among University students in Jordan. Int J High Educ. 2020;9(3):120–8.

    Article  Google Scholar 

  2. Farsides T, Woodfield R. Individual differences and undergraduate academic success: the roles of personality, intelligence, and application. Pers Indiv Differ. 2003;34(7):1225–43.

    Article  Google Scholar 

  3. Furnham A, Chamorro-Premuzic T, McDougall F. Personality, cognitive ability, and beliefs about intelligence as predictors of academic performance. Learn Individual Differences. 2003;14(1):47–64.

    Article  Google Scholar 

  4. Papageorgiou KA, Likhanov M, Costantini G, Tsigeman E, Zaleshin M, Budakova A, Kovas Y. Personality, behavioral strengths and difficulties and performance of adolescents with high achievements in science, literature, art and sports. Pers Indiv Differ. 2020;160:109917.

    Article  Google Scholar 

  5. Pervin LA, Cervone D, John OP. Personality: theory and research. 9 ed. Wiley international ed: Wiley; 2005.

    Google Scholar 

  6. Morales-Vives F, Camps E, Dueñas JM. (2020). Predicting academic achievement in adolescents: The role of maturity, intelligence and personality. Psicothema, 32.1, 84–91.

  7. Komarraju M, Karau SJ, Schmeck RR. Role of the big five personality traits in predicting college students’ academic motivation and achievement. Learn Individual Differences. 2009;19(1):47–52.

    Article  Google Scholar 

  8. Sorić I, Penezić Z, Burić I. The big five personality traits, goal orientations, and academic achievement. Learn Individual Differences. 2017;54:126–34.

    Article  Google Scholar 

  9. Chamorro-Premuzic T, Furnham A. Mainly openness: the relationship between the big five personality traits and learning approaches. Learn Individual Differences. 2009;19(4):524–9.

    Article  Google Scholar 

  10. Bruso J, Stefaniak J, Bol L. An examination of personality traits as a predictor of the use of self-regulated learning strategies and considerations for online instruction. Education Tech Research Dev. 2020;68(5):2659–83.

    Article  Google Scholar 

  11. Cervone D, Shadel WG, Smith RE, Fiori M. Self-Regulation: Reminders and suggestions from Personality Science. Appl Psychol. 2006;55(3):333–85.

    Article  Google Scholar 

  12. Gramzow RH, Sedikides C, Panter AT, Sathy V, Harris J, Insko CA. Patterns of self-regulation and the big five. Eur J Pers. 2004;18(5):367–85.

    Article  Google Scholar 

  13. Hoyle RH. Personality and self-regulation. In: Hoyle RH, editor. Handbook of personality and self-regulation. Wiley-Blackwell; 2010. pp. 1–18.

  14. Hoyle RH, Davisson EK. Selfregulation and personality. In: John OP, Robins RW, editors. Handbook of personality: theory and research. The Guilford; 2021. pp. 608–24.

  15. Jensen-Campbell LA, Knack JM, Waldrip AM, Campbell SD. Do big five personality traits associated with self-control influence the regulation of anger and aggression? J Res Pers. 2007;41(2):403–24.

    Article  Google Scholar 

  16. Goldberg LR. An alternative description of personality: the big-five factor structure. J Personal Soc Psychol. 1990;59(6):1216–29.

    Article  Google Scholar 

  17. McCrae RR, Costa PT. Validation of the five-factor model of personality across instruments and observers. J Personal Soc Psychol. 1987;52(1):81–90.

    Article  Google Scholar 

  18. Jackson DO, Park S. Self-regulation and personality among L2 writers: integrating trait, state, and learner perspectives. J Second Lang Writ. 2020;49:100731.

    Article  Google Scholar 

  19. Grover R, Aggarwal A, Mittal A. Effect of students’ emotions on their positive psychology: a study of Higher Education Institutions. Open Psychol J. 2020;13(1):272–81.

    Article  Google Scholar 

  20. Kira IA, Shuwiekh HA, Ahmed SAE, Ebada EE, Tantawy SF, Waheep NN, Ashby JS. (2022). Coping with COVID-19 Prolonged and Cumulative Stressors: the Case Example of Egypt. International Journal of Mental Health and Addiction, 1–22.

  21. Vega D, Torrubia R, Marco-Pallarés J, Soto A, Rodriguez-Fornells A. Metacognition of daily self-regulation processes and personality traits in borderline personality disorder. J Affect Disord. 2020;267:243–50.

    Article  PubMed  Google Scholar 

  22. Lewis EG, Cardwell JM. The big five personality traits, perfectionism and their association with mental health among UK students on professional degree programmes. BMC Psychol. 2020;8(1):1–10.

    Article  Google Scholar 

  23. Sirois FM, Hirsch JK. Big five traits, affect balance and health behaviors: a self-regulation resource perspective. Pers Indiv Differ. 2015;87:59–64.

    Article  Google Scholar 

  24. Allaire FS. Findings from a pilot study examining the positive and negative achievement emotions Associated with undergraduates’ first-Year experience. J Coll Student Retention: Res Theory Pract. 2022;23(4):850–72.

    Article  Google Scholar 

  25. Sinring A, Aryani F, Umar NF. Examining the effect of self-regulation and psychological capital on the students’ academic coping strategies during the covid-19 pandemic. Int J Instruction. 2022;15(2):487–500.

    Article  Google Scholar 

  26. Pachón-Basallo M, de la Fuente J, Gonzáles-Torres MC. Regulation/non-regulation/dys-regulation of health behavior, psychological reactance, and health of university undergraduate students. Int J Environ Res Public Health. 2021;18(7):3793.

    Article  PubMed  PubMed Central  Google Scholar 

  27. De La Fuente Arias J. (2017). Theory of Self- vs. externally-regulated LearningTM: fundamentals, evidence, and Applicability. Front Psychol, 8.

  28. de la Fuente J, Pachón-Basallo M, Martínez-Vicente JM, Peralta-Sánchez FJ, Garzón-Umerenkova A, Sander P. Self-vs. external-regulation behavior ScaleTM in different psychological contexts: a validation study. Front Psychol. 2022;13:922633.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Beaulieu DA, Proctor CJ, Gaudet DJ, Canales D, Best LA. What is the mindful personality? Implications for physical and psychological health. Acta Psychol. 2022;224:103514.

    Article  Google Scholar 

  30. Carrasco MA, Holgado FP, del Barrio MV. Dimensionalidad Del Cuestionario De Los cinco grandes (BFQ-N) en población infantil Española. Psicothema. 2005;17:275–80. 17, núm. 2, 2005, pp. 286–291.

    Google Scholar 

  31. Barbaranelli C, Caprara GV, Rabasca A, Pastorelli C. A questionnaire for measuring the big five in late childhood. Pers Indiv Differ. 2003;34(4):645–64.

    Article  Google Scholar 

  32. Brown JM, Miller WR, y Lawendowski LA. (1999). The Self-Regulation Questionnaire. En L. Vandecreek y T. L. Jackson, editors. Innovations in clinical practice: A source book. Vol. 17. (pp. 281–293). Sarasota. FL: Professional Resources Press.

  33. Pichardo MC, Cano F, Garzón A, de la Fuente J, Peralta FJ, Amate J. Self-regulation questionnaire (SRQ) in Spanish adolescents: factor structure and Rasch Analysis. Front Psychol. 2018;9(1370).

  34. Sandín B, Chorot P, Lostao L, Joiner TE, Santed MA y, Valiente RM. (1999). Escalas PANAS de afecto positivo y negativo: validación factorial y convergencia transcultural (PANAS Positive and Negative Affect Scales: Factorial Validation and Cross-Cultural Convergence). Psicothema, 11, 37–51.

  35. De la Fuente J. Self- vs. externally-regulated learning TheoryTM. Almería: University of Almería; 2015.

    Google Scholar 

  36. Pekrun R, Goetz T, Perry RP. (2005). Achievement Emotions Questionnaire (AEQ). User’s manual. Department of Psychology, University of Munich.

  37. Shaufeli WR, Martínez IS, Marqués A, Salanova S, Bakker AB. Burnout and engagement in university students. A cross-national study. J Cross-Cult Psychol. 2002;33(5):464–81.

    Article  Google Scholar 

  38. Maslach C, Jackson SE, Leiter MP. Maslach Burnout Inventory: Manual. 3rd ed. Palo Alto: Consulting Psychologists; 1996.

    Google Scholar 

  39. Sandín B, Chorot P. Cuestionario De afrontamiento del estrés (CAE): Desarrollo Y validación preliminar. Revista De Psicopatología Y Psicología Clínica. 2003;8(1).

  40. Lazarus RS, Folkman S. Stress, Appraisal, and coping. New York, NY: Springer; 1984.

    Google Scholar 

  41. Garzón-Umerenkova A, de la Fuente J, Amate J, Paoloni PV, Fadda S, Pérez JF. A Linear empirical model of Self-Regulation on Flourishing, Health, Procrastination, and achievement, among University students. Front Psychol. 2018;9:536. PMID: 29706922; PMCID: PMC5909179.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ato M, Ato, López J, Benavente A. Un Sistema De clasificación De Los diseños de investigación en psicología (a classification system for research designs in psychology). Anales De Psicología. 2013;29(3):1038–59.

    Article  Google Scholar 

  43. Schermelleh-Engel K, Moosbrugger H, Müller H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res Online. 2003;8(2):23–74.

    Google Scholar 

  44. Tabachnick BG, Fidell LS. Using multivariate statistics. 4th ed. Allyn and Bacon; 2001.

  45. Bajcar B, Babiak J. Neuroticism and cyberchondria: the mediating role of intolerance of uncertainty and defensive pessimism. Pers Indiv Differ. 2020;162:110006.

    Article  Google Scholar 

  46. McCrae RR, Lckenhoff CE. Self-regulation and the five-factor model of personality traits. In: Hoyle RH, editor. Handbook of personality and self-regulation. Wiley-Blackwell; 2010. pp. 145–68.

  47. Staller N, Großmann N, Eckes A, Wilde M, Müller FH, Randler C. Academic Self-Regulation, Chronotype and personality in University Students during the remote learning phase due to COVID-19. Front Educ. 2021;6:681840.

    Article  Google Scholar 

  48. Ahmed W, van der Werf G, Kuyper H, Minnaert A. Emotions, self-regulated learning, and achievement in mathematics: a growth curve analysis. J Educ Psychol. 2013;105(1):150–61.

    Article  Google Scholar 

  49. de la Fuente J, Amate J, González-Torres MC, Artuch R, García-Torrecillas JM, Fadda S. Effects of levels of Self-Regulation and Regulatory teaching on strategies for coping with academic stress in undergraduate students. Front Psychol. 2020;11:22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Harley JM, Carter CC, Papaionnou N, Bouchet F, Landis RS, Azevedo R, Karabachian L. Examining the predictive relationship between personality and emotion traits and Learners’ Agent-Direct emotions. In: Conati C, Heffernan N, Mitrovic A, Verdejo MF, editors. Artificial Intelligence in Education. Volume 9112. Springer International Publishing; 2015. pp. 145–54.

  51. Villavicencio FT, Bernardo ABI. Positive academic emotions moderate the relationship between self-regulation and academic achievement: positive emotions, self-regulation, and achievement. Br J Educ Psychol. 2013;83(2):329–40.

    Article  PubMed  Google Scholar 

  52. Madigan DJ, Curran T. (2020). Does Burnout Affect Academic Achievement? A Meta-Analysis of over 100,000 Students. Educ Psychol Rev (2020).

  53. Wang Y, Xiao H, Zhang X, Wang L. The role of active coping in the Relationship between Learning Burnout and Sleep Quality among College students in China. Front Psychol. 2020;11:647.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bedewy D, Gabriel A. Examining perceptions of academic stress and it sources among university students: the perception of academic stress scale. Health Psychol Open. 2015;1–9.

  55. Grant L, Kinman G. Enhancing well-being in Social Work students: Building Resilience for the Next Generation. Social Work Educ. 2012;31(5):605–21.

    Article  Google Scholar 

  56. Merhi R, Sánchez-Elvira A, Palací FJ. The role of psychological strengths, coping strategies and well-being in the Prediction of Academic Engagement and Burnout in First-Year University students. Revista De Acción Psicológica. 2018;11(2):1–15.

    Article  Google Scholar 

  57. Silverman M, Wilson S, Ramsay I, Hunt R, Thomas K, Krueger R, Iacono W. Trait neuroticism and emotion neurocircuitry: functional magnetic resonance imaging evidence for a failure in emotion regulation. Dev Psychopathol. 2019;31(3):1085–99.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Martínez I, Salanova M. (2003). Niveles de Burnout y Engagement en estudiantes universitarios. Relación con el desempeño y desarrollo profesional (Levels of Burnout and Engagement in university students. Relationship with professional development and performance). Revista de Educación, 330, 361–384.

  59. Harward DW. Well-being and higher education: a strategy for change and the realization of education’s greater purposes. Bringing Theory to Practice; 2016.

Download references


Not applicable.


This research was funded by the R&D Project PID2022-136466NB-I00 and the R&D Project PGC2018-094672-B-I00. University of Navarra (Ministry of Science and Education, Spain), R&D Project UAL18-SEJ-DO31-A-FEDER (University of Almería, Spain), and the European Social Fund.

Author information

Authors and Affiliations



Conceptualization, J.d.l.F and ELG; formal analysis and methodology, J.d.l.F and ELG.; project administration, J.d.l.F.; writing—original draft, J.d.l.F, PS, AG, BU, MP, and ELG; writing—review & editing, J.d.l.F, PS, AG, BU, MP and ELG. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Elkin O Luis.

Ethics declarations

Ethics approval and consent to participate

All procedures in the research process were conducted in accordance with the current guidelines and regulations in 2023. The procedure was approved by the Ethics Committee of the University of Navarra (ref. 2018.170) within the broader context of an R&D Project (2018–2021). Additionally, it is confirmed that informed consent was obtained from all study participants.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuente, J.d.l., Sander, P., Garzón Umerenkova, A. et al. The big five factors as differential predictors of self-regulation, achievement emotions, coping and health behavior in undergraduate students. BMC Psychol 12, 267 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: