World Health Organization. WHO report on the global tobacco epidemic 2019: offer help to quit tobacco use. Geneva: World Health Organization; 2019.
Google Scholar
Goniewicz ML, Knysak J, Gawron M, Kosmider L, Sobczak A, Kurek J, Prokopowicz A, Jablonska-Czapla M, Rosik-Dulewska C, Havel C, et al. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tob Control. 2014;23(2):133–9.
PubMed
Google Scholar
Hajek P, Etter JF, Benowitz N, Eissenberg T, McRobbie H. Electronic cigarettes: review of use, content, safety, effects on smokers and potential for harm and benefit. Addiction (Abingdon, England). 2014;109(11):1801–10.
Google Scholar
Levy DT, Borland R, Lindblom EN, Goniewicz ML, Meza R, Holford TR, Yuan Z, Luo Y, O’Connor RJ, Niaura R, et al. Potential deaths averted in USA by replacing cigarettes with e-cigarettes. Tob Control Int J. 2018;27(1):18–25.
Google Scholar
McNeill A, Brose LS, Calder R, Hitchman SC, Hajek P, McRobbie H. E-cigarettes: the need for clear communication on relative risks. Lancet. 2015;386(10000):1237.
PubMed
Google Scholar
National Academies of Sciences, Engineering, and Medicine. Public health consequences of e-cigarettes. Washington: The National Academies Press; 2018.
Google Scholar
Hartmann-Boyce J, McRobbie H, Lindson N, Bullen C, Begh R, Theodoulou A, Notley C, Rigotti NA, Turner T, Butler AR, et al. Electronic cigarettes for smoking cessation. Cochrane Database Syst Rev. 2021;4(4):Cd010216.
PubMed
Google Scholar
Hiemstra PS, Bals R. Basic science of electronic cigarettes: assessment in cell culture and in vivo models. Respir Res. 2016;17(1):127.
PubMed
PubMed Central
Google Scholar
Pisinger C, Døssing M. A systematic review of health effects of electronic cigarettes. Prev Med. 2014;69:248–60.
PubMed
Google Scholar
Barrington-Trimis JL, Urman R, Berhane K, Unger JB, Cruz TB, Pentz MA, Samet JM, Leventhal AM, McConnell R. E-cigarettes and future cigarette use. Pediatrics. 2016;138(1):e20160379.
PubMed
PubMed Central
Google Scholar
Loukas A, Marti CN, Cooper M, Pasch KE, Perry CL. Exclusive e-cigarette use predicts cigarette initiation among college students. Addict Behav. 2018;76:343–7.
PubMed
Google Scholar
Morgenstern M, Nies A, Goecke M, Hanewinkel R. E-cigarettes and the use of conventional cigarettes. Deutsch Ärzteblatt Int. 2018;115(14):243–8.
Google Scholar
Pierce JP, Chen R, Leas EC, White MM, Kealey S, Stone MD, Benmarhnia T, Trinidad DR, Strong DR, Messer K. Use of E-cigarettes and other tobacco products and progression to daily cigarette smoking. Pediatrics. 2021;147(2):e2020025122.
PubMed
Google Scholar
Schneider S, Diehl K. Vaping as a catalyst for smoking? An initial model on the initiation of electronic cigarette use and the transition to tobacco smoking among adolescents. Nicotine Tob Res Off J Soc Res Nicotine Tob. 2016;18(5):647–53.
Google Scholar
Chan GCK, Stjepanović D, Lim C, Sun T, Shanmuga Anandan A, Connor JP, Gartner C, Hall WD, Leung J. Gateway or common liability? A systematic review and meta-analysis of studies of adolescent e-cigarette use and future smoking initiation. Addiction (Abingdon, England). 2021;116(4):743–56.
Google Scholar
Hajek P, Phillips-Waller A, Przulj D, Pesola F, Myers Smith K, Bisal N, Li J, Parrott S, Sasieni P, Dawkins L, et al. A randomized trial of e-cigarettes versus nicotine-replacement therapy. N Engl J Med. 2019;380(7):629–37.
PubMed
Google Scholar
Foulds J, Veldheer S, Yingst J, Hrabovsky S, Wilson SJ, Nichols TT, Eissenberg T. Development of a questionnaire for assessing dependence on electronic cigarettes among a large sample of ex-smoking E-cigarette users. Nicotine Tob Res Off J Soc Res Nicotine Tob. 2015;17(2):186–92.
Google Scholar
Etter JF. A longitudinal study of cotinine in long-term daily users of e-cigarettes. Drug Alcohol Depend. 2016;160:218–21.
PubMed
Google Scholar
Nutt D, King LA, Saulsbury W, Blakemore C. Development of a rational scale to assess the harm of drugs of potential misuse. Lancet. 2007;369(9566):1047–53.
PubMed
Google Scholar
Salerian A. Addictive potency of substances. Pharm Pharmacol Int J. 2015. https://doi.org/10.15406/ppij.2015.02.00030.
Article
Google Scholar
Koob GF. Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology. 2009;56(Suppl 1):18–31.
PubMed
Google Scholar
Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29–60.
Google Scholar
Hukkanen J, Jacob P, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57(1):79–115.
PubMed
Google Scholar
Fowler JS, Logan J, Wang GJ, Volkow ND. Monoamine oxidase and cigarette smoking. Neurotoxicology. 2003;24(1):75–82.
PubMed
Google Scholar
Guillem K, Vouillac C, Azar MR, Parsons LH, Koob GF, Cador M, Stinus L. Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats. J Neurosci Off J Soc Neurosci. 2005;25(38):8593–600.
Google Scholar
Lewis A, Miller JH, Lea RA. Monoamine oxidase and tobacco dependence. Neurotoxicology. 2007;28:182–95.
PubMed
Google Scholar
Stevenson T, Proctor RN. The secret and soul of Marlboro: Phillip Morris and the origins, spread, and denial of nicotine freebasing. Am J Public Health. 2008;98(7):1184–94.
PubMed
PubMed Central
Google Scholar
Henningfield JE, Keenan RM. Nicotine delivery kinetics and abuse liability. J Consult Clin Psychol. 1993;61(5):743–50.
PubMed
Google Scholar
West R, Hajek P, Foulds J, Nilsson F, May S, Meadows A. A comparison of the abuse liability and dependence potential of nicotine patch, gum, spray and inhaler. Psychopharmacology. 2000;149(3):198–202.
PubMed
Google Scholar
Jacobson K, Martinez J, Larroque S, Jones IW, Paschke T. Nicotine pharmacokinetics of electronic cigarettes: a pooled data analysis from the literature. Toxicol Rep. 2021;8:84–95.
PubMed
Google Scholar
Breland A, Soule E, Lopez A, Ramôa C, El-Hellani A, Eissenberg T. Electronic cigarettes: What are they and what do they do? Ann N Y Acad Sci. 2017;1394(1):5–30.
PubMed
Google Scholar
Rose JE. Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology. 2006;184(3):274–85.
PubMed
Google Scholar
Buchhalter AR, Acosta MC, Evans SE, Breland AB, Eissenberg T. Tobacco abstinence symptom suppression: the role played by the smoking-related stimuli that are delivered by denicotinized cigarettes. Addiction (Abingdon, England). 2005;100(4):550–9.
Google Scholar
Tate JC, Pomerleau CS, Pomerleau OF. Pharmacological and non-pharmacological smoking motives: a replication and extension. Addiction. 1994;89(3):321–30.
PubMed
Google Scholar
Barrett SP. The effects of nicotine, denicotinized tobacco, and nicotine-containing tobacco on cigarette craving, withdrawal, and self-administration in male and female smokers. Behav Pharmacol. 2010;21(2):144–52.
PubMed
Google Scholar
Naqvi NH, Bechara A. The airway sensory impact of nicotine contributes to the conditioned reinforcing effects of individual puffs from cigarettes. Pharmacol Biochem Behav. 2005;81(4):821–9.
PubMed
PubMed Central
Google Scholar
Rose JE, Behm FM, Westman EC, Johnson M. Dissociating nicotine and nonnicotine components of cigarette smoking. Pharmacol Biochem Behav. 2000;67(1):71–81.
PubMed
Google Scholar
Niaura R, Shadel WG, Abrams DB, Monti PM, Rohsenow DJ, Sirota A. Individual differences in cue reactivity among smokers trying to quit: effects of gender and cue type. Addict Behav. 1998;23(2):209–24.
PubMed
Google Scholar
Shaham Y, Shalev U, Lu L, de Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology. 2003;168(1):3–20.
PubMed
Google Scholar
Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38.
PubMed
Google Scholar
Etter JF, Bullen C. Electronic cigarette: users profile, utilization, satisfaction and perceived efficacy. Addiction (Abingdon, England). 2011;106(11):2017–28.
Google Scholar
Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760–73.
PubMed
PubMed Central
Google Scholar
Liu G, Wasserman E, Kong L, Foulds J. A comparison of nicotine dependence among exclusive e-cigarette and cigarette users in the PATH study. Prev Med. 2017;104:86–91.
PubMed
PubMed Central
Google Scholar
Rostron BL, Schroeder MJ, Ambrose BK. Dependence symptoms and cessation intentions among US adult daily cigarette, cigar, and e-cigarette users, 2012–2013. BMC Public Health. 2016;16(1):814.
PubMed
PubMed Central
Google Scholar
Strong DR, Pearson J, Ehlke S, Kirchner T, Abrams D, Taylor K, Compton WM, Conway KP, Lambert E, Green VR, et al. indicators of dependence for different types of tobacco product users: descriptive findings from wave 1 (2013–2014) of the population assessment of tobacco and health (PATH) study. Drug Alcohol Depend. 2017;178:257–66.
PubMed
Google Scholar
Etter JF, Eissenberg T. Dependence levels in users of electronic cigarettes, nicotine gums and tobacco cigarettes. Drug Alcohol Depend. 2015;147:68–75.
PubMed
Google Scholar
Farsalinos KE, Romagna G, Tsiapras D, Kyrzopoulos S, Voudris V. Evaluating nicotine levels selection and patterns of electronic cigarette use in a group of “vapers” who had achieved complete substitution of smoking. Subst Abuse. 2013;7:139–46.
PubMed
PubMed Central
Google Scholar
Steinberg MB, Zimmermann MH, Delnevo CD, Lewis MJ, Shukla P, Coups EJ, Foulds J. E-cigarette versus nicotine inhaler: comparing the perceptions and experiences of inhaled nicotine devices. J Gen Int Med. 2014;29(11):1444–50.
Google Scholar
Stiles MF, Campbell LR, Graff DW, Jones BA, Fant RV, Henningfield JE. Pharmacodynamic and pharmacokinetic assessment of electronic cigarettes, combustible cigarettes, and nicotine gum: implications for abuse liability. Psychopharmacology. 2017;234(17):2643–55.
PubMed
PubMed Central
Google Scholar
Vansickel AR, Weaver MF, Eissenberg T. Clinical laboratory assessment of the abuse liability of an electronic cigarette. Addiction. 2012;107(8):1493–500.
PubMed
PubMed Central
Google Scholar
Pericot-Valverde I, Yoon JH, Gaalema DE. Single- and cross-commodity delay discounting of money and e-cigarette liquid in experienced e-cigarette users. Drug Alcohol Depend. 2020;206:107740.
PubMed
Google Scholar
Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. Am Psychol. 2016;71(8):670–9.
PubMed
PubMed Central
Google Scholar
Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8(11):1481–9.
PubMed
Google Scholar
Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1507):3137–46.
Google Scholar
McPherson S, Howell D, Lewis J, Barbosa-Leiker C, Bertotti Metoyer P, Roll J. Self-reported smoking effects and comparative value between cigarettes and high dose e-cigarettes in nicotine-dependent cigarette smokers. Behav Pharmacol. 2016;27(2 and 3—Special Issue):301–7.
PubMed
Google Scholar
Dowd AN, Tiffany ST. Comparison of tobacco and electronic cigarette reward value measured during a cue-reactivity task: an extension of the choice behavior under cued conditions procedure. Nicotine Tob Res Off J Soc Res Nicotine Tob. 2019;21(10):1394–400.
Google Scholar
Bühler M, Vollstädt-Klein S, Kobiella A, Budde H, Reed LJ, Braus DF, Büchel C, Smolka MN. Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol Psychiatry. 2010;67(8):745–52.
PubMed
Google Scholar
Chase HW, Eickhoff SB, Laird AR, Hogarth L. The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biol Psychiatry. 2011;70(8):785–93.
PubMed
PubMed Central
Google Scholar
Engelmann JM, Versace F, Robinson JD, Minnix JA, Lam CY, Cui Y, Brown VL, Cinciripini PM. Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. Neuroimage. 2012;60(1):252–62.
PubMed
Google Scholar
Kühn S, Gallinat J. Common biology of craving across legal and illegal drugs—a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci. 2011;33(7):1318–26.
PubMed
Google Scholar
Lin X, Deng J, Shi L, Wang Q, Li P, Li H, Liu J, Que J, Chang S, Bao Y, et al. Neural substrates of smoking and reward cue reactivity in smokers: a meta-analysis of fMRI studies. Transl Psychiatry. 2020;10(1):97.
PubMed
PubMed Central
Google Scholar
Nichols TT, Foulds J, Yingst JM, Veldheer S, Hrabovsky S, Richie J, Eissenberg T, Wilson SJ. Cue-reactivity in experienced electronic cigarette users: novel stimulus videos and a pilot fMRI study. Brain Res Bull. 2016;123:23–32.
PubMed
Google Scholar
Wall MB, Mentink A, Lyons G, Kowalczyk OS, Demetriou L, Newbould RD. Investigating the neural correlates of smoking: feasibility and results of combining electronic cigarettes with fMRI. Sci Rep. 2017;7(1):11352.
PubMed
PubMed Central
Google Scholar
Everitt BJ. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories–indications for novel treatments of addiction. Eur J Neurosci. 2014;40(1):2163–82.
PubMed
PubMed Central
Google Scholar
Field M, Cox WM. Attentional bias in addictive behaviors: a review of its development, causes, and consequences. Drug Alcohol Depend. 2008;97(1–2):1–20.
PubMed
Google Scholar
Kwak SM, Na DL, Kim G, Kim GS, Lee JH. Use of eye movement to measure smokers’ attentional bias to smoking-related cues. Cyberpsychol Behav Impact Internet Multimed Virtual Real Behav Soc. 2007;10(2):299–304.
Google Scholar
Mogg K, Bradley BP, Field M, De Houwer J. Eye movements to smoking-related pictures in smokers: relationship between attentional biases and implicit and explicit measures of stimulus valence. Addiction. 2003;98(6):825–36.
PubMed
Google Scholar
Mogg K, Field M, Bradley BP. Attentional and approach biases for smoking cues in smokers: an investigation of competing theoretical views of addiction. Psychopharmacology. 2005;180(2):333–41.
PubMed
Google Scholar
Vollstädt-Klein S, Loeber S, Winter S, Leménager T, von der Goltz C, Dinter C, Koopmann A, Wied C, Winterer G, Kiefer F. Attention shift towards smoking cues relates to severity of dependence, smoking behavior and breath carbon monoxide. Eur Addict Res. 2011;17(4):217–24.
PubMed
Google Scholar
Bradley B, Field M, Mogg K, De Houwer J. Attentional and evaluative biases for smoking cues in nicotine dependence: component processes of biases in visual orienting. Behav Pharmacol. 2004;15(1):29–36.
PubMed
Google Scholar
Bradley BP, Mogg K, Wright T, Field M. Attentional bias in drug dependence: vigilance for cigarette-related cues in smokers. Psychol Addict Behav. 2003;17(1):66–72.
PubMed
Google Scholar
Lochbuehler K, Wileyto EP, Tang KZ, Mercincavage M, Cappella JN, Strasser AA. Do current and former cigarette smokers have an attentional bias for e-cigarette cues? J Psychopharmacol (Oxf Engl). 2018;32(3):316–23.
Google Scholar
Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.
PubMed
Google Scholar
Vollstädt-Klein S, Loeber S, Richter A, Kirsch M, Bach P, von der Goltz C, Hermann D, Mann K, Kiefer F. Validating incentive salience with functional magnetic resonance imaging: association between mesolimbic cue reactivity and attentional bias in alcohol-dependent patients. Addict Biol. 2012;17(4):807–16.
PubMed
Google Scholar
Christiansen P, Mansfield R, Duckworth J, Field M, Jones A. Internal reliability of the alcohol-related visual probe task is increased by utilising personalised stimuli and eye-tracking. Drug Alcohol Depend. 2015;155:170–4.
PubMed
Google Scholar
Schmukle SC. Unreliability of the dot probe task. Eur J Personal. 2005;19(7):595–605.
Google Scholar
Beesdo-Baum K, Zaudig M, Wittchen H-U, editors. SCID-5-CV: strukturiertes klinisches Interview für DSM-5-Störungen—Klinische Version: deutsche Bearbeitung des structured clinical interview for DSM-5 disorders—clinician version von Michael B. First, Janet B.W. Williams, Rhonda S. Karg, Robert L. Spitzer, 1, Auflage edn. Göttingen: Hogrefe; 2019.
Scheurich A, Müller MJ, Anghelescu I, Lörch B, Dreher M, Hautzinger M, Szegedi A. Reliability and validity of the form 90 interview. Eur Addict Res. 2005;11(1):50–6.
PubMed
Google Scholar
Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom K-O. The Fagerström test for nicotine dependence: a revision of the Fagerstrom tolerance questionnaire. Br J Addict. 1991;86:9S.
Google Scholar
Vollstädt-Klein S, Leménager T, Jorde A, Kiefer F, Nakovics H. Development and validation of the craving automated scale for alcohol. Alcohol Clin Exp Res. 2015;39(2):333–42.
PubMed
Google Scholar
Cox LS, Tiffany ST, Christen AG. Evaluation of the brief questionnaire of smoking urges (QSU-brief) in laboratory and clinical settings. Nicotine Tob Res. 2001;3:7–16.
PubMed
Google Scholar
Dowd AN, Motschman CA, Tiffany ST. Development and validation of the questionnaire of vaping craving. Nicotine Tob Res. 2019;21:63–70.
PubMed
Google Scholar
Rash C, Copeland A. The brief smoking consequences questionnaire-adult (BSCQ-A): development of a short form of the SCQ-A. Nicotine Tob Res. 2008;10:1633–43.
PubMed
Google Scholar
Hughes J. Effects of abstinence from tobacco: valid symptoms and time course. Nicotine Tob Res. 2007;9:315–27.
PubMed
Google Scholar
Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385–96.
PubMed
Google Scholar
Crawford JR, Henry JD. The positive and negative affect schedule (PANAS): construct validity, measurement properties and normative data in a large non-clinical sample. Br J Clin Psychol. 2004;43:21S.
Google Scholar
Preuss UW, Rujescu D, Giegling I, Watzke S, Koller G, Zetzsche T, Meisenzahl EM, Soyka M, Möller HJ. Psychometrische evaluation der deutschsprachigen version der Barratt-Impulsiveness-Skala psychometric evalutation of the German version of the Barratt Impulsiveness Scale. Nervenarzt. 2008;79:305–19.
PubMed
Google Scholar
Greenwald AG, McGhee DE, Schwartz JLK. Measuring individual differences in implicit cognition: the implicit association test. J Personal Soc Psychol. 1998;74:1464–80.
Google Scholar
Kirby KN, Maraković NN. Delay-discounting probabilistic rewards: rates decrease as amounts increase. Psychon Bull Rev. 1996;3(1):100–4.
PubMed
Google Scholar
Bechara A, Tranel D, Damasio H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain (London, England: 1878). 2000;123:2189–202.
Google Scholar
Schulz M, Mack B, Renn O, editors. Fokusgruppen in der empirischen Sozialwissenschaft: Von der Konzeption bis zur Auswertung. Wiesbaden: VS Verl. für Sozialwiss; 2012.
Google Scholar
Mayring P: Qualitative Inhaltsanalyse : Grundlagen und Techniken, 11., aktualisierte und überarb. Aufl. edn. Weinheim [u.a.]: Beltz; 2010.
Colloseus C. Grenzen erfahren—von Grenzen erzählen. Die Hebamme. 2016;29:33–8.
Google Scholar
Karlheim C. Depressions-online-foren: Präventiver Nutzen oder ein Risiko für Betroffene und Angehörige? In: Hahn S, Harald S, Abderhalden C, Needham I, Schulz M, Hegedüs A, Schoppmann S, editors. Gesundheitsförderung und Gesundheitskompetenz": eine Herausforderung für die psychiatrische Pflege in Praxis, Management, Ausbildung Forschung: Vorträge, Workshops und Posterpräsentationen 9 Dreiländerkongress Pflege in der Psychiatrie in Wien. Bern: Abt. Forschung/Entwicklung Pflege und Pädagogik, Universitäre Psychiatrische Dienste Bern; 2012. p. 166–7.
Google Scholar
Kahr MK, Padgett S, Shope CD, Griffin EN, Xie SS, Gonzalez PJ, Levison J, Mastrobattista J, Abramovici AR, Northrup TF, et al. A qualitative assessment of the perceived risks of electronic cigarette and hookah use in pregnancy. BMC Public Health. 2015;15:1273.
PubMed
PubMed Central
Google Scholar
Roberts LD. Ethical issues in conducting qualitative research in online communities. Qual Res Psychol. 2015;12:314–25.
Google Scholar
Thompson ME, Fong GT, Hammond D, Boudreau C, Driezen P, Hyland A, Borland R, Cummings KM, Hastings GB, Siahpush M, et al. Methods of the international tobacco control (ITC) four country survey. Tob Control. 2006;15(Suppl 3):iii12-18.
PubMed
PubMed Central
Google Scholar
Fong GT, Cummings KM, Borland R, Hastings G, Hyland A, Giovino GA, Hammond D, Thompson ME. The conceptual framework of the international tobacco control (ITC) policy evaluation project. Tob Control. 2006;15(Suppl 3):iii3-11.
PubMed
PubMed Central
Google Scholar
Vardavas CI, Bécuwe N, Demjén T, Fernández E, McNeill A, Mons U, Tountas Y, Trofor AC, Tsatsakis A, Rohde G, et al. Study protocol of European regulatory science on tobacco (EUREST-PLUS): policy implementation to reduce lung disease. Tob Induc Dis. 2018;16:A2.
PubMed
PubMed Central
Google Scholar
Fong GT, Thompson ME, Boudreau C, Bécuwe N, Driezen P, Agar TK, Quah ACK, Zatoński WA, Przewoźniak K, Mons U, et al. The conceptual model and methods of wave 1 (2016) of the EUREST-PLUS ITC 6 European countries survey. Tob Induc Dis. 2018;16:A3.
PubMed
PubMed Central
Google Scholar
Thompson ME, Driezen P, Boudreau C, Bécuwe N, Agar TK, Quah ACK, Zatoński W, Przewoźniak K, Mons U, Demjén T, et al. Methods of the international tobacco control (ITC) EUREST-PLUS ITC Europe surveys. Eur J Public Health. 2020;30(Suppl_3):4–9.
Google Scholar