Table 3 Benjamini–Hochberg procedure: testing item intercept and factor loadings for BAS invariance between men and women

Model Parameter Relaxed df χ2 P value BH adj p value Sig
M0   88 193.846
M1 λ1 86 193.658 .4120 .0112
M2 λ 2 86 190.588 .0142 .0212 *
M3 λ 3 86 193.663 .8657 .0037
M4 λ 4 86 193.845 .9999 .0012
M5 λ 5 86 190.325 .0530 .0187
M6 λ 6 86 192.848 .2388 .0125
M7 λ 7 86 193.700 .8041 .0062
M8 λ 8 86 191.137 .0162 .0200 *
M9 λ 9 86 186.770 .0001 .0025 *
M10 λ 10 86 192.557 .1378 .0162
M11 α 1 86 187.529 .0017 .0237 *
M12 α 2 86 193.821 .1051 .0175
M13 α 3 86 191.871 .1416 .0150
M14 α 4 86 193.837 .9769 .0025
M15 α 5 86 192.915 .4328 .0100
M16 α 6 86 192.061 .1817 .0137
M17 α 7 86 193.605 .7888 .0075
M18 α 8 86 193.189 .5242 .0087
M19 α 9 86 188.323 .0040 .0225 *
M20 α 10 86 193.641 .8427 .0050
1. df = degrees of freedom; BH = adj p value Benjamini Hochberg adjusted p value. Sig = Significance is determined by p value smaller than BH adj p value. Parameter relaxed denotes which parameter has been relaxed in comparison to M0