Skip to main content

Table 1 Six practical recommendations to improve the reproducibility of meta-analyses

From: On the reproducibility of meta-analyses: six practical recommendations

1. Facilitate cumulative science by future-proofing meta-Analyses: Disclose all meta-analytic data (effect sizes, sample sizes for each condition, test statistics and degrees of freedom, means, standard deviations, and correlations between dependent observations) for each data point. Quote relevant text from studies that describe the meta-analytic data to prevent confusion, such as when one effect size is selected from a large number of tests reported in a study. When analyzing subgroups, include quotes from the original study that underlie this classification, and specify any subjective decisions.  
2. Facilitate quality control: Specify which effect size calculations are used and which assumptions are made for missing data (e.g., assuming equal sample sizes in each condition, imputed values for unreported effect sizes), if necessary for each effect size extracted from the literature. Specify who extracted and coded the data, knowing it is preferable that two researchers independently extract effect sizes from the literature.  
3. Adhere to reporting guidelines: A minimal requirement when reporting meta-analyses is to adhere to one of the reporting standards (e.g., PRISMA). The reporting guidelines ask authors of meta-analyses to report essential information that should be made available either in the main text of the article, or by providing a completed checklist as supplementary material during review and after publication.  
4. Pre-register: Whenever possible, pre-register the meta-analysis research protocol to distinguish between confirmatory and exploratory analyses.  
5. Facilitate reproducibility: Allow others to re-analyze the data to examine how sensitive the results are to subjective choices such as inclusion criteria. Always include a link to data files that can be directly analyzed with statistical software, either by providing completely reproducible scripts containing both the data and the reported analyses in free software (e.g., R), or at the very minimum a spreadsheet that contains all meta-analytic data that can easily analyzed in any statistical program.  
6. Recruit expertise: Consider consulting a librarian before you start the literature search, and a statistician before coding the effect sizes, for advice on how make the literature search and effect size calculations reproducible.